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1. INTRODUCTION

The usual mixed linear model discussed in the literature on

variance components is

Y • XB + u1~1+...+u1,~ + C (1.1)

• whet. X, U1,...,U~, are known matrices, ~ is a fixed unknown

vector parameter and • ,...,~~ , 
c are unobservable random

variables (r.v.’.) such that

E(c) — 0, E($~) • 0, — 0, 1~j. E(csj) 0

E(~e’) — ~
2t , E($~$~) • (1.2)

The unknown parameters a~, a~,..., a~ ate called variance components.

Some of the early uses of such models are due to Yates and

Zacopancy (1935) and Cochran (1939) in survey sampling, Yates (1940)

and Rao (1947, 1956) in combining intra and interbiock information

in design of experiments, Fairfield Smith (1936), Henderson (1950),

Panes (1946) and Rao (1953) in the construction of selection indices

in genetics, and Brownlee (1953) in industrial applications. A

systamatic study of the estimation of variance components was under-

taken by Henderson (1953) who proposed three methods of estimation.

The general approach in all these papers was to obtain p+l

quadratic functions of Y, say Y’Q~YI i — l~...,p+l, which are

invariant for translation of Y by Xa where a is arbitrary,

and solve the equations

- 
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• Y ’Q 1Y — F (Y ’Q
1

Y) — a
i a2 + a~1

o~+...+a~~a2 (1.3)

i — 0,l , . . ., p .

The method of choosing the quadratic forms was intuitive in nature

(see Henderson, 1953) and did not depend on any stated criteria of

estimation, The entries in the ANOVA table giving the stuns of

squares due to different effects were considered as good choices

of the quadratic forms in general. The ANOVA technique provides

good estimators in what are called balanced designs (see R. L. Anderson,

1975 and R. L. Anderson and P. P. Crump , 1967) but, as shown by

Se.ly (1975) such estimators may be inefficient in more general linear

model.. For a general discussion of Henderson’s methods and their
i

advantage. (computational simplicity) and limitations (lack of

uniqueness, inapplicability and inefficiency in special cases) the

reader ii referred to papers by Scen e (1968, 1971), SeCly (1975),

Olsen, Scaly and Birkes (1976) and Narville (1977, p. 335).

A completely different approach is the ML (maximum likelihood)

method initiated by Hartley and Rao (1967). They considered the

likelihood of the unknown parameters ~~, ~~~~~~~~ based on observed

Y and obtained the likelihood equations by computing the derivatives

of likelihood with respect to the parameter., Patterson and Thompson

(1975) considered the marginal likelihood based on the maximal

invariant of Y, i.e., only on E’Y where B is a matrix orthogonal

to X and obtained what are called restricted maximum likelihood (RML)

equation.. Harville (1977) has given a review of the ML and RML

methods and the computational algorithms associated with them .

• Onà criticism of the ML estimators is that they may be heavily

biased so that some caution is needed when they are used as estimates

, 9



of individual parameter , for taking decision , or for using them

in the place of true values to obtain an efficient estimate of 8.

Th. problem is not accute if the exact distribution of the Mt

estimators is known, since in that case appropriate adjustments

can be made in the individual estimators before using them. The

general large sample properties associated with ML estimators are

misleading in the absence of studies on the orders of sample sizes

for which these properties hold in particular case..

The bias in RML estimators may not be large even in small

samples. But both ML and RML estimators are functions of B’Y,

the maximal invariant of ‘1, and thete are important practical cases

where reduction of Y to B’Y results in non—identifiability of

individual parameter s , in which case neither ML nor RML is applicable.

The details are given in Section 5.

Rao (1970, 197la , 1971b, 1972, 1973) proposed a general method

called MINQE (Minimum norm quadratic estimation) the scope of which

has been extended to cover a variety of situations by Focke and Dewess

(1972), Ileff. (1975, 1976, 1977a,b, 1978, 1979), J. N. K. Rao (1973),

Fuller and Rao (1978),R,duri Rao and Chaubey (1978), Pukelsheim (1977 ,

1978), Sinha and Wieand (1977) and Rao (1979). The method I. applicable

to a general linear model

Y — X8 + c E(cc’) — e1
V1+...+e~V~ (1.4)

where no structure need be imposed on c and no restrictions are

plac.d on or V~. (In the model (1.1), e~ ‘ 0 and V~ are

• non—negative definite).

In the MINQE theory, we define what is called a natural estimator

-; 1.3
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of a linear function f’S of 0 in terms of the unobservable r.v.

£ in (1.4), say t ’Ne . Then the estimator Y’AY in terms of the

observable r,v. Y is obtained by minimi.ing the norm of the difference

between the quadratic forms c ’Nc and Y’AY • (0 + c)’A (XB + c).

The universality of the MlNqfmethod arises from the following

c’hsnrvnt ions :

(a) It offers a wide scope in the choic. of th. norm depending

on the nature of the model and prior information available.

(b) One or more restrictions such as invariance, unbiasedneas

and non-negative definiteness can be placed on Y’AY

depending on the desired propertisa of the estimators.

Cc) The method is applicable i. situations where ML and RML fail.

(d) There is an automatic provision for incorporating available

prior information on the unknown parameters 8 and S.

Ce) Further, ML and RML estimators can be exhibited as iterated

versions of suitably chosen MINQ1~.

(f) The MlNQiequation provides a natural numerical algorithm for

computing the ML or R}IL estimator.

(g) For a eu itahle ch ’t ee of the norm , the MINQ estimator s provide

minimum variance estimators of 0 when Y is normally

distributed.

It has been mentioned by some reviewers of the MINQE theory that

the cosputations needed for obtaining the MINQ estimator. are somewhat

heavy. It is true that the closed form expressions given for MINQE ’s

contain inverses of large order matrices, but they can be computed in

a simple way in special cases that arise in practice . The computations

-- ~~~~~~~~~~~~ ~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-~



—••—,.~~•• -~ ----- •—~~~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
.

-- ,

in such cases are of the same order of magnitude as obtaining sums

of squares in the ANOVA table appropriate for the linear model.

Perhaps, some research is needed in developing simple numerical

algorithms in more comp~Iicated cases. It is certainly not true

that the computation of MLE or RNLE is simpler than that of MINQE .

Both may have the same order of complexity in the general case.

• ~~
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2. MODELS OF VAR IANCE AND COVARIANCE COMPONENT S

2.1 General Model

There is a large variety of models of variance and covariance

component. used In research work in biological and behavioral sciences.

They can all be considered in a unified frame work under a general

Gauss-Markoff (GM) model

Y • XB+ c (2.1.1)

where Y is n—vector random variable , X is n x m matrix, a is

s—vector parameter and c is n—vector variable . The models differ

mainly in th• structure imposed on c. The most general formulation is

E(c) • 0 (2.1.2)

D(c) • e1v1÷...+e~v~ — V( e) — V0 (2.1.3)

where D stands for the dispersion (variance covariance) matrix ,

B’ • (e1 ...~e~) is unknown vector parameter and V1,...,V~, are

known syemetric matrices. We let 6cRtm and B F (open set) c
such that V (B) 0 (i.e., nonnegative definite). In the representation

(2.1 3) we have not imposed any restriction such as 0~ > 0  or V~ is

nonnegative definite.

ft may be noted that any arbitrary n x n dispersion matrix

• • (Ifl
) can be written in the form (2.1.3)

zre V (2.1.4)

involving a maximum of p • n(n—1)/2 unknown parameters 0~~ and

knoirn matrices V~~, but in model8 of practical interest p has a

2.1
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relativ.ly small value compared to n.

2.2 Variance Components

A special case of the variance components model is when c has

the structure

c — U1+ 1+...+U~$ (2.2 .1)

where is n x m1 given matrix and is m1—vector r .v .  such

that

— 0, E(~1+~ ) — 0 i~j, E(~1~~) • a~I .  (2.2.2)

In such a case

V(O) • e1v1+...+e~v~ (2.2.3)

where V1 a > 0 and • ) 0. Most of the models discussed

in literature are of the type (2.2.1) leading to (2.2.3).

In th. classical regression model p — 1. Other examples are one

and two way classification models with fixed and random effects.

The complete GM model when ~ has the structure (2.2 .1)  is

Y — X~ +

— 0; E(
~i~~
) • 0 i~j; E($1~~) — a~I .  (2 .2.4)

The associated statistical problems are :

(a) Estimation of 8

(b) Estimation of a~ , i — l,...,p

(c) Estimation of $~
, i • l,...,p. (2.2.5)

1~~2.2

I. ~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~ — •— -  --



The last problem arises in the construction of selection indices in

genetics, and some early papers on the subject providing a sat isfactory

solution are due to Fairfield Smith (1936), ~anse (1946) based on an

idea suggested by Fisher , and Henderson (1950). A theoretical

justification of the method employed by these authors and associated [
tests of significance are given in Rao (1953).

A particular case of the model (2 .2 .4)  is where it can he broken

down into a number of eubmodela

Y1 — + c1,...,Y — X~8 + c (2.2.6)

where Y is n —vector variable andI I

E(c1) — 0, E( c
1c~
) — 0~I , E(c~c~) — 0. (2.2.7)

Note that the 8 parameters are the same in all submodels, and in

some situations the design matrices X11...,X may also be the same .

The model (2.2.6) with the covariance structure (2.2.7) is usually

referred to as one with “heteroscedastic variances” and the prob li’m

of estimating B as that of estimating a “cousnon mean”.

2.3 Variance and Covariance Components

We assume the same structure (2.2.1) for £ but with different

covariancss for the

— 0, ~~~~~~ • A1, i —

- 

E(s1~~) — o~I , I — k + l , . ..,p  (2.3 .1)

— 0 , i~~~j

_ _ _ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _ _ _ _  _ _ _ _ _ _ _ _ _ _  _ _ _ _ _ _ _  ~
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leading to

V(0) • UlAlUi+...+UkAkUI~ 
+ a

~+1U~~1U~+1+...+a2U U ’ (2.3.2)

where A~ > 0. In some practical problems A~ are all the same and

there is only one ~
2 in which case (2.3.1) becomes

V(0) — U
lAUj+

...+U
k

AU
~ 
+ O2I. (2.3.3)

2.4 Random Regression Coefficients

This is a special case of the variance and covariance components

model considered in 2.3 where c has the structure

£ — X~1 + 2 ’ E($
1$~

) • A , E(~2$~) — ~
2
i (2.4.1)

the. compounding matrix for •~ 
being the same as for B leading to

the GM model

Y — X 8 + X~1 ++2

D(e) — XAX ’ + ~2i (2 .4 .2)

In general, we have repeated observations on the model (2.4.2)

with different X ’s

Y1 
— X1~ + X

1~11 + 21’ • l,...,t (2.4.3)

leading to the model

Y X B + e  (2.4.4)

2.4
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with

/X1
AX
1 + a 21 0

D(c) — f . (2.4.5)

0 X~AX~ + ~
2
t )

all the off diagonal blocks being null matrices. A discus5ion ol

such models is contained in Fisk (1967), Rao (1965, 1967), S~~-rv (1971),

and Spjotvoll (1977).

2.5 Intraclass Correlation Model

We shall illustrate an intraclass correlation model wIth special

reference to two way classified data 4~ ~~~ 6~~~u~.~~ t -  ~~~~ e4L

i — l,...,p; j l,...,q; k l,...,r. (2.5.1)

We write

1
flk U1~~ + Clik ~2.5.2)

where are fixeti ~ -~r~ r ’~eter s vith a spec if i ed ~~t i  ~~~~‘‘

- 

- 
E(
~jjk

) — 0. E(c~~ ,~) —

E(eijrcjjs) — ~~~ r#s

E(CijrCiks) — 0202, j#k, r#s ~2.5.3)

E(tijrctks) 
a ~

2 
i#t, j~k, r#s.

This dispersion matrix of (Y k~ 
can be exhibited iti

(2.1.3) with four parameters ~
2
, 

~~~ ~2’ 
03• A model of the -~~e -

~ 
j 1~

2.5
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(2.5.2) is given in Rao (1973, p. 258).

2.6 Nultivariat. Model

A k—variate linear model is of the form

• X(B~;...,8~) + (c1:...:ek)

E(cic~
) — 0j 3 ij v •  (2.6.1)

Denoting Y —  ~~~~~~~~~~ B a  (Bj....,8~). ~~~~— ~~~~~~~~~~ the

multivariate model may be written as a univariate model

V .  (I@X)~~+~~

p
E(~~ ’) a £ (0~ ØV 1) (2 .6 .2)

1—1

- where 0~ are (kxk) matrices of variance and covariance co~ip~”.-’pt~ .

In the multivariate regression model p a 1, in which case

E(E~ ’) — 0~~~V. (2 .6.3)

We may specify structures for c analogous to (2.2.1) in t~~~

univariate case

— U 1~ 11+...-MJ • 1, i — l,...,k

E(
~im 4~m

) — a~~~ , E($ ir~~h ) a 0 r~a. (2.6.4)

For special choices of we obtain multivariate one , Vwo , . . .vay

- 

- 
mix•d models.

~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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Models of the type (2.6.2) have been considered by Krishnaiah

and Lee (1974). They discuss methods of estimating the covariance

matrices and testing the hypothesis that a covariance matrix

has the structure (2.6.2).

a

2.7 -
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3. ESTIMABILITY

31 Unbiasedness

Let us consider the univariate GM model (2.1.1) with the

covariance structure (2.1.3)

Y • X8 + c , D(c) — O1V1+...+OV~, (3.1.1)

and find the conditions under which linear functions f’O can be

estimated by functions of Y subject to some constraints. The

classes of estimators considered are as follows :

Q — (Y’AY , A symmetric ] (3.1.2)

Uf 
a {g(Y) : E [g(Y) ] — f ’ O  V 8cRtm

, OcF) (3.1.2)

1 — (g(Y) — g(Y + Xa)} (3.1.3)

Theorem 3.1.1 provides conditions for unbiased estimability.

Theorem 3.1.1. Let the linear model be as in (3.1.1). Then :

(1) The .stimator Y’AY I. unbiased for y — f’O 1ff

X ’ AX — 0, tr AVi 
- f 1’ i a i,...,p. (3.1.5)

(ii) There exists an unbiased estimator cc~ 1ff fcS(H),

ii — (h 1~). h11 
— tr(V iVj — PV1PV

J
) (3.1.6) T

wh.r. P is th. projection operator onto S(X).

(iii) If Y has aultivariate normal distribution, then Uf fl Q is

not empty.

a 

3.1
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The results (1) and (ii) are discussed in Scaly (1970) , Rao (1970,

1971) and Focke and Dowses (1972) and (iii) in Pincus (1974).

Note 1: Result (ii) holds if in (3.1.6) we choose

• tr(V 1(I — P)V~). (3.1.7)

Note 2: In the special case V1V~ — 0 for i~j ,  ~~~ the i-tb

individual parametar,is unbiasedly estimable 1ff MV~ # 0 where

t i — I - P .

L~~~a 3.1.1. The linear space ~ of all unbiasedly estimable

linear functions of 0 is

r — {E Y’AY:A 0P(V1 PV1P~...~V~~PV~P)) (3.1.8)

where sp (A1,...,A ) is the set of all linear combinations ofp
A1,...,A .

Let us consider the multivariate model (2.6.2) written in a vector

form L

i •  i~
’ 1~~)X)B+c

— 01 Øv1+...+ 0~~~~V (3.1.9) H

where are kak matrix variance—covarian ce components.

Lemma 3.1.2. The parametric function T — E f
1 

trC 0 j 5

unbiasedly estimable from the model (3.1.9) 1ff f’O Is so f r om

the univariate model (3.1.1).

________ - 
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Lemma 3.1.3. The class r of unbiasedly estimable linear

functions of elements of 0
1, 

1 — l,....,p in (3.1.9), is

- 

~ • {y — E trC1 
O
i: C~ are such that Rb — 0~~~E b~C1 — 0]

(3.1.10)

where H is as defined in (3.1.6) .

3.2 Invariance - 

-

An estimator is said to be invariant for translation of the parameter

8 in the linear model (3.1.1) if it belongs to the class (3.1.4) .

Theorem 3.2.1 provides the conditions under which estimators belonging

to the class U
f 
A I exist.

Theorem 3.2.1. Let the linear model be as in (3.1.1) . Then :

(1) The estimator VA? £ A I 1ff

AX — 0, tr AV1 f1, I — l,...,p~ (3.2.1)

(ii) There exists an unbiased estimator in class Q. A I 1ff

f £ I(H1~) where

• — (h1~ )~ ~~~ — tr(MV 1MV~)~ M • I — P. (3.2.2)

(iii) Under the assumption of normality of Y, the result (3.2.2)

can be extended to the class I.

Note: In (3 .2.2) ,  we can choose

— tr(BB ’V1BB ’V~) (3.2.3)

where B is any choice of X~’, i.e., B is a matrix of maximum

rank such that B’X — 0. 

— - ---- ----—- — --~ 
- 
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L a  3.2.1. The linear space of all invariantly unbiasedly

estimable linear functions of 0 is

r1 • (E ?‘MAt4?: A t .p(V 1—PV 1P .....V~ -PV~P)) . (3.2.4)

L~~~a 3.2.2. If f’O is invariantly unbiasedly eøtimable from

the model (3.1.1) then so is y • E f1 trC 0
1 

from the model (3.1.9).

Lemma 3.2.3. All invariantly unbiasedly estimable linear functions

of the elements of O
r,..., 

e~ in the model (3.1.9) belong to the

set

— E tr C1 Oi: C1 
are such that UNb — 0 ~~~ Eb

1
C1 

— 0). (3.2.5)

Note: We can estimate any member of the class (3.2.5)

by functions of the form

— £ tr(C~ Y’A~Y)

where ~~~~~~~~ are matrices arising in invariant quadratic unbiased

estimation in the univariate model (3.1,1).

3.3 ~~amples

Consider the model with 4 observations

-~~ 
Y1 81 +c1, y

2 — 8 1 + c 2, Y3 — 8 2 + c 3, Y4 82 + c 4

where t
~~ 

are all tmcorrelsted and V(~1) • V(e3) • and

~ V(c 4) • o~. The matrices X , V1. V2 and P the proj ectfo~

3.4
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operator are easily seen to be

jl 0 1 0 0 o\ / 0 o 0 0
I l  0 0 0 0 0 1  1 0  1 0 0x — i V I — I

~ 0 1 ‘ 1 0 0  1 0 1 ’ 2 ( 0 0 0 0
\o 1 0 0 0 oJ \0 0 1 0

1 1
2 2 0 0
1 1 0 0P 2 2
0 0 1 1

The matrices 14 and of Theorems 3.1.1 and 3.2.1 are

/1 1
1 2  ~

-
~~\ (1 ~ii — ,  1 ,

( 1  3 /  ~~l 1
2J \J~~

Since H is of full rank , and o~ are individually unbiasedly

estimable. But Is of rank. one and the unit veetots do not

belong to the space S(H.~
) and therefore, and o~ are not

individually unbiasedly estimable by invariant quadratic forms .

Consider the model Y - X8 + x~ + c where B is a fixed

• vector parameter and • is a vector of random effects such that

E(~) — 0, E($,’) — o~I , F.(~c’) — 0, E(cc’) — 0~I. Let

Y’AY be an unbiased estimate of a~. Then we must have

X ’ A X .O , tr AXX ’ — l ,  t r A O

which is not consistent since X ’AX — 0~~~~tr AXX ’ • 0. Hence

unbiased estimators of o~ do not exist.

3.5
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4. MINIMUM VARIANCE UNBIASED ESTIMATION-NORMAL CASE

- 
I 4.0 Notations

In Section 3, we obtained conditions for unbiased estimability

of f’8 in the linear model

Y — X8 + c D(c) — 01v1+...+O~,v~, — V0 (4.0.1)

restricting the class of estimators to quadratic functions of Y.

In this section we do not put any restriction on the class of

estimators but assume that

Y - Nn(XB~
V0)~ 

B C Rm , 0 £ F (4.0.2)

i.e., n variate normal, and V0 is p.d. for 0 £ F. The

condition that V0 is p.d. is assumed to simplify presentation of

results, and is satisfied in many practical situations.

First, we derive the locally minimum variance unbiased estimator

(LMVUE) of f’O at a chosen point (B
~
,6
~
) in RmXF. If the

estimator is independent of B0, 0 then we have a uniformly

minimum variance unbiased estimator (UMVUE). Such estimators do

not exist except in simple cases . In the general case we suggest

the use of LMVUE wi th a suitable choice of B
~, 0 based on previous

• experience or apriori considerations, We also indicate an iterative

method which starts with an initial value (B
~
,e
~
), gets an improved

set (81,e1), 
and provides in the limit an iterated lIVE.

LMVUE’s are obtained in the class of quadratic estimators by
- La Matte (1973) under the assumption of normality and by Rao (1971)

in the general case. Such estimators were designated by Rao as

4.1

:~~~~~~~~~~
- ___________



MIYQUE (minimum variance quadratic unbiased estimator). In this

section we show that, under the tioruiality assumption , M1W~UF is

LMVUE in the whole class of unbiased estimators.

4.1 Locally Minimum Variance Unbiased Estimation

Definition 4.1.1. An estimator 
~~, 

is called LMVtTE of its - ‘I

expected value at (8 ~~,0~ ) ~ if f

V(~~ I B ,6 )  ~~V(yI80,00) (4.1.1)

for all ~ such that

• E (y )~~ (8 ,0)c RmXF. (4.1.2)

We use the following notations:

V0 — e1v1+...+e~,v~,

A1 — v;’(v1
_P
0v1P~)v;

1, P9 - x(x’V~~x)X’v~~

K — (tr A1V1)

k
8 0
. 1(Y—X a)’A 1(Y—x B)....~ (Y—x8 ’A~C!—x8 1’. (4.1.3)

Let (Ø
~
,e
~
) be an apriori value of (8,0~. Then applying

the result (3.1.6) of Theorem 3.1.1 we find that f’O i~

unbiasedly estimable 1ff

( C S ( K 6 ).- 0
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Theorem 4.1.1 provides an explicit expression for the LMVUE.

Theorem 4.1.1. Let f satisfy the condition (4.1.4) and K~,

k
8 0  be as defined in (4.1.3). Then the LNVUE of f’e at (8~,0~)

I-
— A thI

8,0 
— £ Ai U0)’Ai(Y..X80) (4.1.5)

where is any solution of A — f.

Theorem 4.1.1 is established by showing tha t
0_

cov (g (Y) , c f B0,00) — 0

for all g(T) such that E(g(Y) Ia,°J 0 V B c Rm, 0 £ F, and

using the theorem on minimum variance estimation given in Rao (1973,

p. 317).

r 4

Note 1: For any A, X’k is LMVUE of its expected value

which is a linear functions of 0~ Thue (4.1.5) characterizes all

LMVUE’s of linear functions of 0 at (8,0).

Note 2: The variance of ~ as defined in (4.1.5) is

V(~~B,e) • 4(fr-B0)’X’AV~AX(8—80) + 2 tr AV0AV0 (4.1.6)

where A — £ with A1 c~~puted at 04~
, The variance at

(
~~

,e
~
) is

- 

• 

V (~ IB0 ,e0) — 2 )‘K
9 X— 2 f’çf (4.1.7)

- 
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where Xe is any g—inverse of K
0 

.

0

Note 3: The BLUE of X8 at 00 is

X8 — P0 Y. (4.1.8)

Substituting ~ for B0 in (4.1.5) we have

a A ’k~~9 — Y’(MV
0

M)~~ZA 1v1)MV0 M)4y (4.l.9’~

+where M — I — X(X X) X , and C is Moore Penrose inverse of C

(see Rao and Mitra, 1972). The statistic which is independent 
- ‘

-

of the apriori value of ~ is an alternative estimator of f’O but

it may not be unbiased for f’O .

Not e 4: Theorem 4.1.1 can be stated in a different form as
~Iifollows. If f’O is unbiasedly estimable then its LMVUE at s0 ,e

is f’8 where Ô is any solution of the consistent equation

K 0 k  (4.1.10)
- 0~

Note 5: Let ~ (i.e., each component of 0) be estimable in

which case is nonsing ular and the solution of (4.1.10) is
O —l

01 — 

~ ,~~ 
• Let be a solution of XB — P

0 
Y. We may use

0 0 0  0

the LMVU E of 8,0 as initial values and obtain second stage

estimates ê2 and B
2 of ~ and ~ as solutions of

o — k- , XB • P~ Y. (4.1.11) —

i ~~~~ •1

-
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The process may be repeated and if the solutions converge they

satisfy the equations

— k
80

, X 8 — P0Y. (4.1.12)

The solution (j,~
) of (4.1.12) may be called IMVU E (iterated

minimum variance unbiased estimator) of (B O). The exact properties

of (~,ê) are not known.

4.2 Invariant Estimation

Let us restrict the class of estimators to invariant unbiased

(IU) estimators, i.e., estimators g(Y) such t’iat

- 
g(Y + XB) — g(Y) V ~

EFg(Y) I B,e1 • f’o (4.2.1)

and find the locally minimum a unbiased estimator (LMVIUE).

Let

N — I - P  P— X ( X ’X ) X ’

• 1T171() — (tr[(MV 0M)
+vj(MV0M)~v j1)

— (trfV ’(I—P
9

)V
1
(I—P~ )V ’V~J)

h1(Y ,0)  a ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

- rY1v;’(I_P 9
)vl

u_P~)v;
ly,...,yv ;l(I_P 0)v~ ( I P ~)v;

1
YJ~ (4.2.2)

- I Theorem 4.2.1.

• (i) f e  is invariantly unbiasedly estimable if!

4.5
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f c •~(H
111 (~

) )  (4 .2.3)

for any choice of 0 such that V0 is nonsingular .

(ii) The LMVIUE of f O at 0 i~

— A ’ h ( Y 6 ) (4 .2.4)

where A is any solution of [}1 1(o )Jx — f .

The results of Theorem 4.2.1 are obtained by transforming the

model Y — XB + £ to a model involving the maximal invariant of Y,

t — B Y  • B C  a (4.2.5)

where B — XL, which is independent of 8, and applying Theorem 4,1.1.

f

Note 1: Theorem 4.2.1 can be stated in a different form as r

follows. If f’0 is invarlantly unbiasedly estimable , then its

LMVIUE at 8 is f’O where 0 is a solution of

- h
1

(Y ,00) (4.2.~~)

where 14
UI~°~ 

and h1(Y,O) are defined in ( 4 . 2 , 2 ) .

Note 2: If 0 admits invariant unbiased estimation , then as in

Note 5 following Theorem 4.1.1 we may obtain IMVIUE of (~ ,0) as the solution

of

X8 - P
0Y (4.2.7)

— h1 (Y ,e).

4.6
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5. MINIMUM NORN QUADRATIC ESTIMATION
(MINQE—TREORY )

5.0 MINQE—principle

In Section 4 we assumed normal distribution for the random vector

Y in the linear model and obtained the LMV1JE of linear functions of

variance components without imposing any restriction on the estimating

function. However, we found that the estimators were all quadratic.

In the present section we øhall not make any distributional assumptions

but confine our attention to the class of quadratic estimators and lay

down some principles for deriving optimum estimators. ,, 
-

Natural estimator. Consider a general random effects linear model.

Y — X8 + U1$1+...+U $ — X6 + u~

.1 0, E(+i~i) 
— ~~~~ E($~~j) — 0, ~~~ (5.0.1)

When is known , a natural estimator of 01 is

, 

°i — 

~
j 4- r~ r1 — R(G1) (5.0.2)

which has nice properties such as uniformly minimum variance under

mild conditions on the moments of 4~
. Then a natural estimator of

• f’O, a linear function of 9, is

~~~~~ — 
~~~~~~~~ 

G $ ~ — •‘N~ (say). (5.0.3)

Given a model of the form (5.0.2) and apriori values a1 of 0~ , we

can by a suitable transformation of

- • 

• 
L’~~~.1 B1B~ — 01.

- - 
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Write the model in the form

Y • XB +

where U~ —

E(+i) — 0, E($~$~) — 0i1r~’ 
E(
~i$~

) — 0 (5.0.4)

and the apriori values of 01 are all equal to unity. We assume that

such a transformation is made before analysis of data. In terms of the

model (5.0.4), a natural estimator of is

It is not clear how the concept of a natural estimator can be

extended to the general model - •

Y — XB + U~, E($~ ’) —

D(Y) — O1UF1U’+...+O UP U’ a 01V1+...+O V  (5.0.5)

where $ may not have the structure defined in (5.0.4). However, using

prior values a1 ... a~ we may transform • to where

F — a
1
F1+...+u F~, and U to UF”2. If (5.0.5) represents the model

after such a transformation of U and + (0 and V1 remain unchanged)

we may formally extend the concept of a natural estimator, although we

may not claim any optimal properties as in the case when • has the 
•

structure of a random effects model.

Definition 5.0.1. Under the general model (5.0.5), a natural

estimator of ~ ‘ — f’O is

E u~$’F1+ 
— •‘N• (5.0.6) 

0~

5.2 •
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where N — E 
~1
F1, u — (u1....~u~)’ is a solution of H~a — f,

H • (tr F~FJ
).

A more general definition of a natural estimator in terms of

c when the model is Y — XB + £ without specifying any structure

for c is given in Section L l~.

)IINQE—theory. Consider the general model (5.0.5) and a quadratic

estimator — Y’AY of fO. Nov

Y’AY — (
~

) ‘(
~:~ ~~~~~ (5.0.7)

while the natural estimator is •‘N$ as defined in (5.0.6). The

difference between Y’AY and •‘N$ is

I — I

B X’AU X ’AX B~~

The minimum norm quadratic estimator (MINQE) is the one obtained by

minimizing an appropriately chosen norm of the matrix of the quadratic

form in (5.0.8)

D D U’AU-N U ’AX
O 11 12 

• . (5.0.9)
D21 D22 X’AU X’AX

• We shall consider mainly two kinds of norms, one a simple Fuclidsan

norm

tr + 2 tr + tr D22D22 (5.0.10)

and another a weighted Euclidean norm

tr D
11WD11W + 2 tr D12KD21W + tr D22KD22K (5.0.11)

5.3
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where ~J and K are n.n.d matrices. The norm (5.0.11) gives

different weights to • and B in the quadratic form (5.0.8).

We impose other restrictions on A (and indicate the MINQE so

obtained by adding a symbol in brackets) such as Y’AY

(a) is unbiased: MINQE (U)

(b) is invariant for translation in B: MINQE(I)

(c) satisfies both (a) and (b): MINQE(U, I)

(ci ) is unbiased non—negative definite: MINQE(U, D)

(e) is invariant non-negative definite: MINQE(I, D), etc.

The properties of the estimator strongly depend on the norm
Li

chosen and the restrictions imposed . We also obtain a series of

IMINQE’s (i terated MINQE ’s), by repea tedly solving the MINQE equations

- 
- using the solutions at any stage ao prior values for transforming the

model as indicated below equation (5.0.5).

5.1 NINQE(U, I)

We consider the class of invariant unbiased quadratic estimators,

i.e., of the form Y’AY where A belongs to the class

C~1 — (A: AX — 0, tr AV~ — f
1 

i — l,...,p) (5.1.1)

where X and V1 are as defined for the general model (5.0.5). We

use the following notations and assumptions

T — (V + XX’) > 0, V — a1V1+...+uV — UU’

a X~~~T~~~~ X T , RT 
— - 

~~

5.4 -~~~ 
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where a Is a prior value of 0.

Theorem 5.1.1. If C~1 
is not empty, then under the Euclidean

norm (5.0.10), the MINQE (U , I) of f ’ 8 is

• — E A~Y’A1Y~ A
1 

— T ’R.rVicT ’ (5.1.2)

where A — (A1.....A~)’ is any solution of

[H
~j

(a)JX — f (5.1.3)

where H
~1
(a) is the matrix (tr A1V~).

_______ 

;ji
Proof. Under the conditions (5.1.1) , the square of the

Euclidean norm in (5.0.10) becomes

— tr(U ’A~~’AU) - 2 tr MU’AU + tr ~~~~~~, (5.1.4)

But N • E c1F1~~~
tr NU’AU — E 

~
ijfi so that we need minimize only

the expression

tr AVaAV
a 

- tr ATAT for A c C~~1
. (5.1.5)

• It is easy to show that (5.1.5) is minimized at A~ 
such that

• tr DTAT — 0~~ 1) £ (5.1.6)

DCC
u

°

t 
~~~~ D — E ~~~ , tr B ~~V1~~ 

— 0 for arbitrary B..

Then
- T A5T — 1 A IRTVIR,.

_  - -~~~~~~~~- - - 

• . 
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which gives the solution (5.1.3). The equation for A is obtained •

by expressing the condition of unbiasedness. Note that [H~71 (a)J~ — f is

consistent if C~1 is not empty. Also the solution (5.1.2) is independent
of N.

Note 1: MINQE(U I, I)’ s are additive.

Note 2: An alternative expression for y given in (5.1.3) is

— Z 
~~~~~~~ 

A1 a (
~~a

M)
~~i
(
~~a

M)
~ (5.1.7)

where ~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Note 3: When V
~ 

is nonsingular, T can be replaced by V in

Theorem 5.1.1. Then

- Z A 1Y ’ A1Y , A~ — v lR.~ v1R~~v
1. (5.1.8)

Note 4: If Y is normally distributed, MINQE(U , I) is LMVU E of

• f’O at values of 0 where E 0
1
V
1 is proportional to V .  (See r

Theorem 4.1.1).

Note 5: If in (5.1.4) we use the weighted Euclidean norm (5.0.11)

IIU’A U—NI( 2 — t r (U ’AU—N) W(U’AU—N)W (5.1.9)

where W is p.d., the solution may not be independent of N. The

expression (5.1.9) can be written as

O tr A C A G — 2 t r A}1 +tr NWN (5.1.10)

where C — UWU ’ and H • UWNWU ’. If C is nonsingular, then the

• mipimum of (5.1.10) is attained at

- 
- 
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— C 1
(~ A iRc

v
i1~ 

+ RdHR~
)G ’ (5.1.11)

where A
1 

are determined from the equations

tr A
~
Vj — f1, 1 —

Note 6: It is seen from (5.1.2) that the estimate of f’O

can be written in the form f’Ô where 0 is a solution of

uI~°~
1° • h ( Y ,a) (5.1.12)

where the i—th element of h
1

(Y ,a) is

Y ’A1Y — Y ’T ’RT
VIcT

’Y (5.1.13)

and 110(U,I) is a~ defined in (5.1.3). If each component of 0

admits invariant unbiased estimation then H (U,I) is non—singular

and the MINQE(U, I) of 8 is

0 — [H.~j1(a)]
’h
1

(Y,a) - (5.1.14)

Note 7: The computation of MINQE(U, I) of e involves the use

of a a - prior value o 0. If we have ..o prior Information on 8,

there are two possibilities. We may take a as a vector with all its

elements as unity. An alternative is to choose some a, compute

(5.1.14), consider it (say ~1) as an apriori value of 0 and repeat

the computation of (5.1.14). The second round value, say 82 is an

appropriate estimate of 0, which may be better than 01 if the initial

choice a is very much different from

We may repeat the process and obtain 83 choosing 02 as an

5.7
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anriori. value and s~~n. The limiting value which satisfies the

equ.~ition

a h1(Y,~) (5.l-~l5)

is the IMINQEQJ, 1), the iterated MINQE (U, 1), which is the same

er~ IMVIUE defined in (4.2.7). It is shown in Section 6 that the

ec~u~ition (5.1.15) is the restricted maximum likelihood (RML)

equation considered by Patterson and Thompson (1975).

5.2 MINQE(U)

We drop invariance and consider only unbiasedness, as in

problems such as those mentioned by Focke and Dewess (1972) where

the condition for invariance does not hold. In such problems where

invariance condition is not used, it is advisable to use an apriori 
—

value B
0 

of 0 and change Y to Y — X00 and B to (B—B 0)

and work with the transformed model in addition to the transformation

indicated in (5.0.5). The class of unbiased estimators of f’O is

defined by

C1, — (A~ X’AX — 0, tr AV~ f1, 1 • 1,...,p} (5.2.1)

where X and V1 are as in th~ general mod eL (S 0.5).

Thev~rc:5.2.l. Let V - UU’ be p.d. If C~ is not empty

then the ?!IPQE(U) under Euclidean norm (5.0.10) is

a Z X 1Y’ A1T~ A1 
(V + ~~~~~~~~ — P

v
V
i
P,~~

)(V + XX’ )~~ (5.2.2)

where A — (X11...,A ) ’  is any solution of

EH 11 ( ci ) )A — f (5.2.3)

- 
- - ~~~~~~~~~~ ~~~~~~~~~~~~ ~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



where fl
~
(a) is the matrix (tr A1VJ

).

Proof. Under (5.0.10) we have to minimize

lI U ’AU—N 11
2 

+ 2 J I t J ’ A X I I 2

which, using (5.2.1), reduces to

tr AV AV + 2 tr AV AXX ’.. tr AV A (V + ZXX’) (5.2.4)

— tr ATAT, T — V + XX’. (5.2.5)

The expression (5.2.4) attains a minimum at A~ if f

tr DTAT - 0 V 0 c Q~. (5.2.6)

Observing thrt D c Q~ 4fl — B - PT,EPT and following the

arguments of Theorem 5.1.1, the expression fur is obtained

as in (5.2.2), where is replaced by the equivalent expression

PV .
a

Note 1: We shall consider a few alternatives to the simple

Euclidean norm. Focke and Devess (1972) give different weights to

the two terms in (5.2.3) as in (5.0.11). Choosing W — I and

2K r , (5.2.4) becomes

tr AV AV + 2r2tr A~Va
AXX ’

~ (5.2.1)

The constant r2 determine the relative weights to be attached to

B and •. The solution obtained by minimizing (5.2.7) is called

r—MINQE(U) which is the same as (5.2.2) with X replaced by rX.

- Note 2: The iterated estimates of B and MINQE(U) of 0 are

.- 5.9-



.-- - ---.-.-~ -

~~~ I

solutiona of the equations

X’ Ve
’XB - X ’V~~Y

(}L,~( e) I o  — h
u

(Y.e) (5.2.8)

where

h
U

(Y ,O) — (Y’A1Y~....Y
’A~Y). (5.2.9)

and Ai are as defined in Theorem (5.2.8). The solution

of (5.2.8) is represented by IMINQE(U).

5.3 .-MINQE(U)

In (5.2.7) we defined r—MINQE(U) which uses a weighted Euclidean

norm to provide differential wieghts to B and • and also suggested

a translation in Y using a prior value of B. Actually we may

consider a transformation which changes

-‘ Y — X80, B -‘ r
_1
~
_1
~
l2
~

where and r2K correspond to apriori mean and dispersion of B.

Then the Euclidean norm of (5.0.10) becomes

tr A(V + r 2XXX ’) A(V + r2XJcX ’) (5.3.1)

which may be minimized.

Let us denote the optimal solution in such a case by A
r and

define A0 lbs Ar as r • •. If A
0 exists, we call the

corresponding estimator Y’A
0
Y, the —MINQE(U). The following theorem

due to Focke and Dewess (1972) establishes the existence of —MINQE(U).

I -.
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Theorem 5.3.1. Let (/ be the set of linear combinations of

Vl, . . . ,~V•p.

(i) .-MINQE(U) exists if C~ is not empty.

(ii) A0 is the unique matrix which minimizes tr AVaAVa ~~~~~

the class C — (A: XKX’AV M + MV AXKX’ — V
0
—PV

0
P, V

0 £ (/) (5.3.2)

(iii) .‘.-MINQE(U) is Invariant with respect to nonsingular linear L
transformation of the model (5.0.5).

Theorem 5.3.1 characterizes c’—MINQE(U) but does not provide the

method of calculating it. Theorem 5.3.2 gives the formula when V — I,

from which the formula f or general V can be derived by a transformation

of the model in view of statement (iii) of Theorem 5.3.1.

Theorem 5.3.2. Let C — (tr MV1NV
1
), B — (tr HV1(XKX?)

+
v~) and

be not empty. If V — I, the .—MINQE (U) of f’O is ~ — Y ’A5Y

where

A
~ 

— (XKX~)+V0M + ~~~~~~~~~ + MVbM (5.3.8)

V0 E a 1V1, Vb
_ E b

iVi

and a — ~~~~~~~~~~ b — (b1~...~b~)’ satisfy the equations

- Gb + 2 B a — f , Ca 0. (5.3.9)

Theorem 5.3.3. If V is p.d. and is not empty, the c’—MINQE(U) - ‘

1. obtained by replacing M by (MVuM) + in (5.3.8).

Proof. We consider the model V ”2Y — V ”2X + and

apply the result of Theorem 5.3.2. On simplication the formula stated

;

a .
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r
in Theorem 5.3.3 is obtained .

Note 1: It is interesting to note that ‘°—MINQE(U) is the same !+

instead of the sequence r2K, we consider (A + r2K) for any A > 0 .

Note 2: .‘—MINQE(U) ~oincid~s with MINQE (U , I) if it exists.

5.4 MINQE Without Unbiasedr.’45

Let us consider the linear model

Y — X8 + e, E(ee ’) — 0
1
V1+...~~~V — V9. (5.4.1)

Choosing a prior value a of 8, (5.4.1) can be written

Y — XB + V~
”2c~ (5.4.2)

where — V 112 
~
- and V

~ 
— a1V1

+...+u~,V~,. Using the definition

(3.0.6) with e~ as 4, a natural estimator f’O is

- c~(~ A iVi*)c*, v~~ a (5.4.3)

where A — ~~~~~~~~~~ is chosen such that £
~

Ne
~ 

is unbiased

for f’e, i.e., A satisfies the equation [H(c*)IA — f where

H(u) a (tr V
1~
V
~5

) — (tr V 1V~V
1V

J
). (5.4.4)

It is seen that (5.4.3) is LMVU E of 8 at 8 — a when c Is

normally distributed. In most of the applications the natural

estimator Is independent of a, which Ia an ideal situation.

Tb~ MINQE of f’O is Y ’AY where A is chosen to minimize

5.12
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1J~ 1 ’ ’ 1’?V A V  —N X ’AV
C~ a

.5.4.5)
1~’V ~~\ \  X ’AX .

In Sections 5.1 — 5.3 we imposed the condition of unbIa se :~~-~

on Y’AY. We w it h d r a w  this condition but consider som~ .11 tct - niti- •~

restrictions on the symmetric matrix A as defined by the ‘l l ~~~~n~

classes.

C — (~ ‘~.6)

C~~ (A: X ’AX — 0) ( 5 .  -~.7)

C1 — (A ~ AX —0 ) (5 .4.8) •.

It is seen that when A
~
Cpt,, the bias in the estimator ~~~~~~ ~~~

independent of the location parameter B, and is thus parti ally

unbiased (PU). The MINQE ’s ohtai~ted subject to the restrict l t - i ’-

(5.4.6)—(5.4.8) are represented by MINQE, MINQE(PU), MTN0E (T~

respectively. The concept of MINQE(I) is due to Poduri R~n . in

Chaubey (1978).

Theorem 5.4.1. C~nsh~er the model (5.0.5) and let

V ~ V 1+...+c~ \ - H .  
~~:th~ 1~ t ‘ ~ V where’

~ li p j~ 
- i i

A (X 1.....A~ ) ’  s i t L~f 1~ ’- the equation [}1(a)1A a f , w her

— (tr V V
1
V~~v~~ . Then under the Ruclidean norm in

(5.4.5), the optimal matrix A
~ prov id ing MINQ E ’ s are as fo11~”~;.

- —l —1(1) MINQE : A~ — (\  + XX ’) W(V + XX ’)

-
- 

(ii) MINQE(PtT) : A ,~ — (~ + Xx ’) ’(w — PWP \ (V +

- r ~ \(~~v x )X ’v~~ (5.~~.lo)

t —
-
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(iii) MINQE(I): A
~ 

— (MV M)FW(MV
3

M) +,

— \ 1 (I — P ) W ( I  — P ) V ~~ (5.4.11)

~-,here H a I - X(X’X)X.

- Froof. Under Eucildean norm , the square of (5.4.5) is

tr (V~~
2
AV~~

2-N)2 + 2 tr (X’AV AX ) + tr (X ’AX ) 2. 5 .4 .12 )

Without any restriction on A , the minimum of (5.4.12) is attained

at A iff
*

rr (V 2
A~V

2_N)V~~~BV~~
2 

+ 2 tr(X ’A~V BX) + t r (X ’A~ XX’ RX ) ( 5 .4 . 1 3)

for any symmetric matrix B. Then A
~ 

satisfies the equation

v~~
2(v 2A~

v
~~

2-N)v~~
2 

+ XX ’A
*

V + V A
*

XX’ + XX ’A
~

XX ’ — 0

or (V + XX ’)A
~~(V + XX ’) — V~

’2 NV~
’2 - ~ A

1
V
1 

= w

(V + XX ’) 1W(V + XX ’) 1

~h l c h  is th~~ ~~~~~~~~~~~~~ ~~~~~~~~~ i .

If A is subject to the restriction X ’AX 0, then ~5.4.i3)

r ’;t ct hold when B i~ replaced by B — P ’BP where P Isa a a L
d~ ffned In (5.4.10). Then arguing as above and noting that P V  ‘- V P ’ ,

th.~ equa tion for A
~ 

Is

(V + X’~’~~-\ ( V  -4- ‘X ’) ~ ~ ~~~(V
1 

— P V 1P
’)

5.14
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-
. or A

~ 
a (V + xx ‘ —1 (W - 

~a~~cs~ 
(V + XX’ ) —l

which i. the matrix given in (5.4.10).

If A Is subject to the condition AX — 0, then (5.4.13)

mus t hold when B is replaced by MBM where M “ I — P. Then

satisfies the equation

~~ a
M
~~*~~

\T
a

M) - MWM

or A
~ 

— aM~~~~
M
~
T
a

M) ”

V~~(I 
— P )W(I — P’)V 1

which ~s the matrix given in (5.4.11).

Note 1: MINQE in (5.4.9) and MINQE(I) in (5.4.11) are -:
automatically non—negative, while MINQE(PU) may not be.

Note 2: The MINQE(I) of f’O given in (5.4.11) can be written

as f’8 where 8 is a solution of

rN ( a) •le  — h
1

(Y ,cx) (414)

where H(s) is as defined In (5.4.4) and the i—tb element of
- 

h
1

(Y,a) is

Y’V~
1(I — P ) V

i
(I — P’)V 1Y. (5.4.15)

The equation (5.4.14) is consistent. If 0 is identifiable then

H(a) is non—singular, In which case 8 — 1H(a)J~~b(Y,I) .  This

form of the solution enah~r~ us to obtain IMINQE(I), i.e., iterated

a

- 

5.15 
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MINQE(I) , by writing 9~ - (ft(a)J
1h0(Y,I) and obtaining a second

stage estimate 6 with a replaced by 
~~

. The limiting solution,

if the process converges, satisfies the equation

[R(8)1° — h1
(Y,0) (5.4.16)

which is shown to be the maximum likelihood equation in Section 6.

5.5 MINQE (D)—Non—negatlve Definite Estimator

In the general variance components model, we admitted the

posasibility of some of the parameters being negative. But there

are cases auch as the random effects model where the variance components

are non—negative and it may be desirable to have non—negative estimators

- for them. The estimators considered so far except those in Section 5.4

can assume negative values although the parametric function Is non—

negative. In this section we explore the possibility of obtaining

unbiased quadratic estimators ~ — Y ’AY with A > C) of parametric

functions f’O which are non—negative in BtF for a general model.

A MINQE in this class is denoted by MINQE(U, 1)), where F) stands for

non—negative definiteness cf the quadratic estimator.

The following lemma characteriges the nature of the matrix A if

~r has to be unbiased and non—negative.

Lemma 5.5 1. A non—negative and unbiased quadratic estimator

Y’AY satisfies the invariance condition, i.e., AX Q.

Proof. Unbiasednessr~ X’AX — O4AX a 0 since A ~~0.

-In view of Lemma 5.5.1 we need only consider the class of matrices

5.16
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C
~D 

a {A : A > 0, AX 0, tr AV
1 

— f~ , 1 — l,...,p}. (5.5.1)

Further, because of invariance we can work with a transformed model

t — z ’Y a

E(t) — 0, E(tt ’) — 0
1

B
1+...+ 0 B ~ ‘5.5.2)

where Z — X 1 
(with full rank say s) and B1 

— Z’V1Z , i —

We need consider quadratic estimators ~ — t’Ct where C balongs to

the class

— {C: C > 0, tr CB
1 

a f1}• (5.5.3)

Lemma 5.5.2. C
~D 

is not empty if f

f c convex span {q(b): bcR°} (5.5.4)

where q(b) — (b ’MV1Mb~~....b ’MV~Mb) ’.

Note: In terms of the model (5.5.2), the condition (5.5.4) Is

f c convex span {q(b), beR5} (5 5.5)

where q(b) — (b’B1
b~ ....b ’B~b). H

The conditions (5.5.4) and (5.5.5) ~aa rather complicated , hut

simple results can be obtained if we assume ~~~~~~~~ to be n.n.d.

Theorem 5.5.1. Let V~ > 0 , i a 
~~~~~~ 

V — E V1 and ~~~

and B1 be as defined in (5.5.2). There exists an n n.d. auadrt’rir

unbisied estimator of 0~ 1ff

5.17 
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S(R
1

)~~ ~ (B
(1)
)~~~S(MV J

M)~~~S (MV
(J)

M

~~) S(Mv~~~M)~~ S(MVM)44R(MV (1) M) < R(MVM). (5.5.6)

Note ~.: The condition (5.5.6) can also be expressed as

(I - G )V~ (I - C) ~ 0 (5.5.7)

where C is the projection operator onto the apace generated by the

coli~ ns of the compound matrix

(X : V
1 : ... : V~~1 : V1~ 1: ... : V) . (5.5.8)

Note 2: If S(V1) ~ S(M),  then S(MV
1

M) ~ S(MV
1M) for all 1 ,

in which case,application of Theorem 5.5.1 shows that at most 0
1 ~~

non—negatively estimable.

Note 3: If S(V1) 
) S(M) and S(V2)2 S(M) , then none of the

single components are non—negatively estimable.

• Note 4: (LaMotte . 1973 .) If V
(J) 

> 0, then 01 is not non—

negatively estimable. Further , if V~ > 0, then 
~~ 

i~j i~ not

non—negatively estimable.

However, let us assume that C
~D 

[s not empty for a given f and

estimate f’e by MTNQF principle. For this purpose we have to minimize

I jA~ 1
2 

- tr AVAV when AcC~~. (5.5.9)

5.18
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This appears to be a difficult problem in the general case. Of course,

if MINQE(U , I) turns out to he a non—negative estimator in any given

situation it is automatical ly MINQE(U, D). It may also be noted that if

sp {MV1M ,...,MV M } is a quadratic subspace with respect to (~~~~ j )
+

then the HINQE(U, I) of f’O is n.n.d. 1ff C~~~~ is not empty.

Since Is a convex set , we proceed as followa to solve

the problem (5.5.9). The minimum is attained at A
~ 

1ff

tr BVA” tr A
*
VA
*
V Y BcC~~ (5.5.10)

or writing B — A
~ 
+ D, the condition (5.5.12) becomes

tr DVA
~

V > 0 V DcV (5.5.11)

V — (D: DX = 0, A~ + D > 0 , tr DV~ 0, I l ,...,p). (5.5.12)

A general solution for (5.5.11) cannot be explicitly written down, but

the formula will be useful in examining whether any guessed solution

for A
~ 

provides a MINQF.(t1 , F)). We shall consider some special cases.

Theorem 5.5.2. Let V1 
> 0 , 1—  l,...,p, and O~ be estimable , I.e.,

the condition (5.S.9) ~s ~~rIsfIcd . Then the MTNQE(U , F)) of is

• 01 = ~-~.- - ~- Y ’A~Y , A
1 

— [(I  — G)V
1

(I - Cfl 4- (5.5.13)

where C is the projection operator onto the space generated by t he

columns of (X , V1,... ,V1 1 ,  V
1~

11.. .

An alternative ap~~ t 4 H  t n  the problem (5.5.~) based on standard

methods of convex ~ i ’ ~~T if l1f l in~ t~ provided by Pu •keisheim (1Q77).

5.1Q
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• We define the functional

g(B) — mm (HA Il
2 —~~A ,B)) (5.5.14)

AcC~1

where h A i l
2 

a 
~~ AVAV and ~A ,B> a tr AVBV with V > 0, and

call the problem

sup g(B) (5.5.15)
13>0

as the dual optimization problem.

Lemma 5.5.3. Let A~cC~~ and B
~ 

> 0 be such that

HA~h I 2 
— 

~
(
~~

) (5.5.16)

Then: 
-•

(i) A
~ 
and B

~ 
are optimal solutions of (5.5.9) and (5.5.15).

• (ii)~~A5,B5> — 0. (5.5.17)

Note: g(B) is bounded above since

• \ A H 2 
~~.‘ (B) for all 8. (5.5.18)

For obtaining a saciafactory solution to the problem (5.5.9) we

need an explicit expression for g(B). We obtain this tn terms of A

where Y’AY is the MTNQE (!T , I) of f’O. Let us note that any matrix

can be decomposed in term s of symmetric matrices

11= B
0 
+ (B ~

0
)

such that B0tC~1 and ~~~ , T~-~~~ > 0. The matrix 130 f~ simply the

I
5.20
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projection of B onto the suhspace in the space of symmetric

matrices with inner product < • ,•> as def ined in (5.5.15). We note

that by construction A is such that

<A , ~
0
> = 0 for any given 8. (5.5.19)

Theorem 5.5.3. Let Y’AY be MINQE(U, I) of f’O and he •

not empty. Then:

(I) g(B) - h A t !2 -~ A ,B > - ~ h l ~~l I ~ (5.5.20)

(ii) B
~ 

is optimal [i.e., maximizes g(B)) 1ff

A + -
~~
. B~ > 0, <A + f B~ , B~ > — 0 (5.5.21)

(iii) A~ — A + + ~~~2 
(5.5.22)

is a solution to (5.5.9), i.e., provides MINQF.(U, F)) of

• f’O and 
~~~~~~~ 

= 0.

The results of Theorem 5.5.3 are still complicated . A sufficient

condition for optimality of A
~ 

tn given In Theorem 5.5.4.

Theorem 5.5 .4.  Ff there exists a B > 0 such that B~~O and

A — A -  
A ,B 8

0
> 0

* H R °H 2 —

then A
~ 

is an optimal solution of (5.5.11).

Proof. Check . ‘ j t t~~ii t v  t v  the condition (5.5.16) notim’ t ! i ~

B
,,n011 2

5.21
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6. MAX IMUM LIKELIHOOD ESTIMAT ION

H ~.1 The General Model

We consider the general GM model

F Y = X 6 + c

E(cc ’) — 01V1
+. . .+O V — V

0 
(6.1.1)

and discuss the maximum likelihood estimation of 0 under the
I -~

assumption

Y - N~ (Xf3,V0)~ 8€Rm , OcF. (6.1.2)

We assume that V
0 

is p.d. for V OcF.

Harville (1977) has given a review of the ML estimation of 0

describing the contributions made by Anderson (1973), Hartley and

Mo (1967), Henderson (1977) , Patterson and Thompson (1975), Mil1’~r

(1977, 1979) and others. We discuss these methods and make some
r1

additional comments.

The log likelihood of the unknown parameters (6,0) Is

propor tional to

= — io
~~lV 0 I — (Y—x~) ’ V~~(Y—x8). (h.l.3)

The proper ML estimator of (8 , 0)  is a value 
~~~~~~~~~~~ 

such that

• 
~~~~~~~ — sup t(t3,0,Y). (6.1.4)

Such an estimator does not exist In the important case considered

• by Focke and Dewess (1972). In the simple version of their prob l em

there are two random variables

• 

6.].
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Y
1 =~~~~~c1

E(c~) — a~ , E( c~ ) a~ , E(c1E2) 
a 0. (6.1.5)

The likelihood based on and Y
2 

is

(Y1-~)
2 

~~~~~— log O
i 

- log 0
2 

— 

2 
— 7 (6.1.6)

201 2a
2

which can be made arbitrarily large by choosing u and letting

0
1 

+ 0, so that no proper MLE exists. The ML equations obtained equating

the derivatives of (6.1.6) to zero are

2 2 2 2 1 1 “1 ~
‘
2

— (Y1—u) , , ~~~~~ 
+ 

~~~ 
— -i. +

- 0
1 

0
2 

0
1 

0
2 

(6.1.7)

which imply 01 
— Thus the ML approach fails to provide

acceptable estimators. However, in the example (6.1.5), all the

parameters are identifiable and MINQE(U) of o~ and exist.

A similar problem arises in estimating and o~ in the model

- Y X8 + Xy + c where F(yy’) O~1,  E(cc ’) = and

.‘ 0.

It i.s wel l  k~~ c~~ t~~~~~~~ • -
~~ e~-~ imators of variance components rrc-

~-e~ v1ly blaseJ in c ’ r -’r~~1 and In some situations considered by N evm an

and Scott (1948), they ~re not even consistent. In such cases, the

use of ML estimstors for drawing inferences on individual parameters msv

lead to gross errors , u n l i -’ss the exact distribution ~f the ~~T . ostirv~tors

• is known. These drnwhackc and the computational d1fftcu1t i~-’~ inv~ lv~d

in obtaining the !~1 i~~ t n ra “r~ke the ML method less attr t4 v ’ ror

• practical ~pp li en~ f~ ti
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6.2 MaxInn~ Likelihood Equations

For OcF such tha t V
0 

> 0 (i.e., p.d.), the likelihood of

(8,0) is

t (B ,0 ,Y) — — iog~V0~ 
— (Y—X8)’V~~(Y—XB). (6.2.1)

Taking derivatives of (6.2.1) w.r.t. to B and 0~ and equating -

them to zero we get the ML equations -

— X’V8
1Y (6.2.2) -

tr v~~V1 
— (Y—xB ) ‘V~~V1V~~(Y—XB) (6.2.3) 

—

I — 1,.. .,p.

Substituting for B In (6.2.3) from (6.2.2), the equations become

XB — P0Y, P0 
a X(X’VØ

1X) X’V~
1 (6.2.4)

EH (0)]0 — h
1

(Y,0) (6.2.5)

where 11(0) — (tr V ’V1V~~v~) is the matrix defined in (5.4.4) and ! r
the i—th element of h1(Y .0) Is

• Y’ CI — P~ ) ’V~~v1V
1 (I — P0)Y (6.2.6) 

• 

H

which is the same 5Q the expression defined in (5.4.15).

We make a few comments on the equations (6.2.4) and (6.2.~
’i.

(I) The ML equation .2~ 5’~ is the same as that for IMTNOE(T)

given in (~~~- ‘s .~~~: - ~~~.

(ii) The oripJi~- ’  Uke1If ’~~~ equation (6.2.~~ is unh1aQr”~ wh ile

the PC ~~~ 1i ~~~~~~ ~J’•7. ~- ‘ i t c h  provides a direct rst I ~~~ ~~~t

6.3 
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is not so in the sense

E[h (Y,e)) # [JT(o)]o . (6 .2.6)

An alternative to the equation (6 .2.5) is the one obt ained

by equating h
1
(Y,o) to its expectation

h
1

(Y ,~) E[h
1
(Y,e)) EHui(e)]0 (6.2.7)

which Is the restricted ML (RML) equation suggested by

Patterson and Thompson (1975).

(iii) There may be no solution to (6.2.5) In the admissible set

F to which 0 belongs. This may happen when the supremum

of the likelihood is attained at a boundary point of F.

(iv) It is interesting to note that the ML estimate of 0 is

invariant for translation of Y by Xa for any o, i.e., 
•

the MLE is a function of the maximal Invariant B’? of ?

where B — X~.

Suppose 0 in the model (6.1.1) is identifiable c”

the basis of distribution of Y in the sense: F
O~ V ) +...+O 1V~~~ 01 — 0~ 0 for ‘~~~

Le .,  V ~;‘ • 1~~ - ‘ :  independent . Put. 5r r-. ”-

as in the case of the example of Focke and flewess (~972),

that 0 is no longer identifiable when we consider only

the distribution of B ’Y , the maximal invariant of V .

Such a situation arises when R ’V
1B are linearly dependent

while V1 are not. In such cases the ML method i~ nnt

applicable while MINQE (U) developed in Section 5.2 cr’n be

• used. Thus, the Invarf~nce property of MLE limtr ~- ‘~~~~

scope of appti.catlcrn c-f the ML method .
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(v) Computational algorithms: The equation (6.2.5) for the

estimation of 0 is, in general, very complicated and

• no closed form solution is possIble. One has to adopt

iterative procedures. Ilarville (1977) has reviewed some

of the existing methods.

• (a) If is the k—th approximation to the solution of

(6.2.5), then the (k+1)—th approximation is

0k+1 — [H(
~k) J h I (Y ,êk) (6.2.8)

as suggested for IMINQE(I), provided 0 is identifiable~

on--the basis ef the mamimal iuwavian$ .f—Y. Otherwise,

the H matrix in (6.2.5) is not invertible. Iterative

procedure of the type (6.2.8) is mentioned by Anderson

(1973) , Rarville (1969), LaMotte (1973) and Rao (1972)

in different contexts. Bovever, it is not known whether

the procedure (6.2.8) converges and provides a solution

at which supremum of the likelihood is attained.

(b) Hartley and Rao (1967), Henderson (1977) and Ilarville

(1977) proposed algorithms suitable for the special case

when one of t he V~ is an identity matrix (or at least

• . 
non—singular). An extension of their method for the general

case is to obtain the (k+l)—th approximation of the i—th

component of 0 as

~~~~~~~~~~~~~~~~ 

)‘V
~
’v
i
V
~~

(I_P
6 )Y

0 k k k k p 6 2 9i,k+l 1k •
tr Ok i

— • I —

In the special case when V1 are non—negative definite

6.5 •
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7
• and the initial are chosen as non—negative, the

successive approximations of 0~ using the algorithm

(6.2.9) stay non—negative. This may be a “good property”

of the algorithm , but it is not clear what happens when

the likelihood equation (6.2.5) does not have a solution

in the admissible region.

(c) Heum~erle and Hartley (1973) and Coodnight and Hemmerle (1978)
developed the method of W transformation for solving the

ML equations. Miller (1979) has given a different approach.

Possibilities of using the variable—metric algorithms of

Davidson—Fletcher—Powell described by Powell (1970) are

mentioned by }Tarville (1977). As it stands, further

research is necessary for finding a satisfactory method

of solving the equation (6.2.5) and ensuring that the

solution provides a maximum of the likelihood.

6.3 Restricted Maximum Likelihood Equation

As observed earlier the ML equation (6.2.5) is not unbiased , i.e.,

E[h1(Y,o1 # [H(e)J0. (6.3.1)

If we replace the equation (6.2.5) by

h1(Y,$)~— E(h1(Y,0)]

— (H (e)Je (6.3.2)

we obtain the IMINQF (U ,I) defined in (5.1.14), which Is the same as

IMVIUE defined in (4.2.7).

The equation (6 .3 .2 )  is obtained by Patterson and Thompson (1975)

by maximizing the likelihood of 0 based on T’T, where I Is any

choice of X~, which is the maximal invariant of Y. Now •

66
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— logtT ’V
0
T~ — Y’T(T ’V

0
T) 1

T’Y. (6.3.3)

Differentiating (5.3.3) w.r.t. 0~ we obtain the RML (restricted

ML) equation

tr(T(T’V0T)
1T’V1

) — Y’T(T’V
8
T) ’T’V 1T(T ’V

8
T) ’T’Y (6.3.4)

i —

- 

Using the Identity (Rao, 197~. p. 77)

T(T ’V
0

T) 1
T’ - v~~ - v;1x(x’v;’X)x ’v;’

— V~~~(I — p )  (6.3.5)

- the equation (6.3.4) becomes

tr~~~
1(I-P0)V1) - 

Y ’ V (I-P
0

)V
1

(I-P~~ )V~~~~~ (6.3.6)

i — l ,...,p

which is independent of the choice of T — X~ used in the construction

of the maximal invariant of Y. It is easy to see that (6.3.6) can be

written as

[H
~~
(0)]0 — h

1
(Y ,~) (6.3.7)

which is the equation (6.3.2” .

(i) Both ML and RML .‘~~ timates depend on the maximal invariant

T’Y of Y. Both the methods are not applicable when 8

is not identifiable on the basis of T’Y.

(ii) The bias in RMLE may not he as heav as in MLE and may he more

useful as point estimators.

(iii) The solution of (6.3.7) may not lie in the admissible set

• • of 0 an In the case of the ML equation.

6.7 
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• (iv) If is th c  k — t h  approx imat ion , t hen the ( k + l ) — t h

approximation can be obtained as

( t i -  (1~,~~)i4h 6 (Y , I ) .  (6.3.8)
k 0k k

It Is not ktiown whether the process converges and yields

a solution whi c l  max imiz e s  the marg inal likelihood .

(v) Another a lgorithm for RM1.F~ sim il a r  to ( .2 .9)  Is to compute

• the (k+ l )— th  approximation to the I—t b  component of 0 as

Y ’ (I—P s )V~~v 1
V~~ ( I— P ~~ ~Y

k k k k

~r V (I—P - )V0k 0
k ~

• It is seen that both ML and Ri’IL estimators can he obtained as

Iterated MINQE’s, MLE being IMINQE (I) defined in (5.4.16) and RMLE

being IMINQE (U , I ) def ined  In (5.1.114). There are other Iterated

MINQE ’s which can be used In cases where ML and RML methods are not

applicable.

It has been rcmar~ ed by ~‘nrIous authors that MINQE involves

heavy computations , requ~r1ng the inversion of large matrices. This

argument is put forward ~igaioi ~t the use of MINQE. These authors

overlook the fac t  t ? i  -~~ ~c~
- c u ;~~~ ’z i  .‘ .~ lar ’~’ m~~r1e 

-
~~ dL ’pen~ on the

• inversion of smaller order II .! tr ces in special  cases. For ins t ance ,

if V0 is of the form (1 ~ tr TW ’) .  then f t  is well known th~~t

I — U(IT ’lT + fl~~~~~ tT ’ (6.3.10)

vhich can be used to compute V~~ i t the matr ix (t1 ’l’ + fl~~
’
~ j~

comparatively of a I r l-il l r ’r ‘ - t  th an ~~ tt may he not ,‘-~ t h a t  th e

com putationa l con -s ~cx t t v - i  flf ~~ - . i - ~~- 
~‘~~dc- ~ f~- r •1T~-~ ’ :n~ - F RIILF .

6.8
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Whsn we hay. good prior information MINQE ’s should be better than

MLE ’. or RMLE’s.

a

6.9
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